skip to main content


Search for: All records

Creators/Authors contains: "Kicklighter, David W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Forests provide several critical ecosystem services that help to support human society. Alteration of forest infrastructure by changes in land use, atmospheric chemistry, and climate change influence the ability of forests to provide these ecosystem services and their sensitivity to existing and future extreme climate events. Here, we explore how the evolving forest infrastructure of the Midwest and Northeast United States influences carbon sequestration, biomass increment (i.e., change in vegetation carbon), biomass burning associated with fuelwood and slash removal, the creation of wood products, and runoff between 1980 and 2019 within the context of changing environmental conditions and extreme climate events using a coupled modeling and assessment framework. For the 40-year study period, the region’s forests functioned as a net atmospheric carbon sink of 687 Tg C with similar amounts of carbon sequestered in the Midwest and the Northeast. Most of the carbon has been sequestered in vegetation (+771 Tg C) with more carbon stored in Midwestern trees than in Northeastern trees to provide a larger resource for potential wood products in the future. Runoff from forests has also provided 4,651 billion m 3 of water for potential use by humans during the study period with the Northeastern forests providing about 2.4 times more water than the Midwestern forests. Our analyses indicate that climate variability, as particularly influenced by heat waves, has the dominant effect on the ability of forest ecosystems to sequester atmospheric CO 2 to mitigate climate change, create new wood biomass for future fuel and wood products, and provide runoff for potential human use. Forest carbon sequestration and biomass increment appear to be more sensitive to heat waves in the Midwest than the Northeast while forest runoff appears to be more sensitive in the Northeast than the Midwest. Land-use change, driven by expanding suburban areas and cropland abandonment, has enhanced the detrimental heat-wave effects in Midwestern forests over time, but moderated these effects in Northeastern forests. When developing climate stabilization, energy production and water security policies, it will be important to consider how evolving forest infrastructure modifies ecosystem services and their responses to extreme climate events over time. 
    more » « less
  2. Abstract

    We use the Multiple Element Limitation (MEL) model to examine responses of 12 ecosystems to elevated carbon dioxide (CO2), warming, and 20% decreases or increases in precipitation. Ecosystems respond synergistically to elevated CO2, warming, and decreased precipitation combined because higher water‐use efficiency with elevated CO2and higher fertility with warming compensate for responses to drought. Response to elevated CO2, warming, and increased precipitation combined is additive. We analyze changes in ecosystem carbon (C) based on four nitrogen (N) and four phosphorus (P) attribution factors: (1) changes in total ecosystem N and P, (2) changes in N and P distribution between vegetation and soil, (3) changes in vegetation C:N and C:P ratios, and (4) changes in soil C:N and C:P ratios. In the combined CO2and climate change simulations, all ecosystems gain C. The contributions of these four attribution factors to changes in ecosystem C storage varies among ecosystems because of differences in the initial distributions of N and P between vegetation and soil and the openness of the ecosystem N and P cycles. The net transfer of N and P from soil to vegetation dominates the C response of forests. For tundra and grasslands, the C gain is also associated with increased soil C:N and C:P. In ecosystems with symbiotic N fixation, C gains resulted from N accumulation. Because of differences in N versus P cycle openness and the distribution of organic matter between vegetation and soil, changes in the N and P attribution factors do not always parallel one another. Differences among ecosystems in C‐nutrient interactions and the amount of woody biomass interact to shape ecosystem C sequestration under simulated global change. We suggest that future studies quantify the openness of the N and P cycles and changes in the distribution of C, N, and P among ecosystem components, which currently limit understanding of nutrient effects on C sequestration and responses to elevated CO2and climate change.

     
    more » « less